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Abstract

Computer networks are becoming increasingly more complex. Efficient
data routing on complex networks is critical to ensure efficient use of a net-
work. This paper details research on 3 different routing algorithms studied
on networks with a ring-based topology at the center. A computer simula-
tion was written to generate statistics on each othe algorithms. Using these
statistics we show that different algorithms on this specific network lay-
out are most efficient under varying traffic levels. A network layout with a
central ring presents a problem for any routing algorithm to route around
effectively.
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Chapter 1

Introduction

The goal of a computer network is to allow information to travel from
one computer to another. It is similar to a system of roads where vehicles
move between destinations. Drivers have various paths they can take, and
the travel time is dictated both by the layout of the roads and the quantity of
traffic. For example, in Figure 1.1, a car has 3 paths it may take. The upper
path is obstructed by a car crash that the driver is likely to see. The middle
middle path also has an accident, but the driver is unlikely to be able to see
this far ahead. The third path is unobstructed. In this situation, it is actually
best for the driver to select the longer third path.

PATH 1

ACCIDENT 1
o

ACCIDENT 2

END

DRIVER

START

PATH 3

Figure 1.1: Driver in traffic with decisions to be made.

Unlike this real-world example, where decisions about routes are de-
cided by the drivers, we are interested in the situation where decisions are
made at a global perspective. Regardless of the decision-making model, the
process used to decide a path is called routing[7].

Decisions upon how data should be routed can be made by examining
available information. These choices are split into two categories, global
and local decisions. To make a global decision, information for the overall
status of a network is used. Figure 1.1 shows a global decision when the
driver is able to take into account that accident 2 exists when making his
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decision to take path 1, 2 or 3. When making a local decision for a routing
path, only data that is immediate to a router is used. Figure 1.1 presents
a driver with a local decision if his only knowledge is of accident 1. The
driver’s choice is made solely upon what is in view at present time.

A router uses a routing algorithm, which is a way to systematically de-
termine a path between two points, to decide how data will travel[12]. The
goal of routing within a network is ultimately for data to flow in the most
efficient way between a start and end destination. Effective routing can
produce not only satisfied end users, but it can also reduce the number of
routers needed, and reduce costs for businesses installing networks.

As data flows across the network, it is sent in bursts of data called pack-
ets. Packets have varying sizes based on the amount of data that is car-
ried within them. If connections on a path were to become unavailable,
then a packet reaching a router may be redirected along another path that is
complete. By utilizing information on the status of connections, congestion
on these connections and also current network utilization, routers have a
chance to optimize paths for new data flowing through them.

Figure 1.2: A simple graph

When studying how to route data packets efficiently on a network we
are actually using tools from an area of mathematics called graph theory. A
network is a special type of representation called a graph. A graph consists
of nodes, and connections between them called edges[11]. Figure 1.2 shows
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a sample graph. Nodes are designated by circles and the edges by lines. On
a computer network, nodes represents computers and routers. Edges de-
scribe the connections between nodes and their associated transfer speeds.
For example, if information at the computer labeled “E” needed to go to
computer “H”, it could go through computers “F” and “G” to reach “H".
The shape of a network given by a graph is called a topology.

Topologies” unique shapes may have effects on how data will be routed
across them. Using routing algorithms we can choose a path for the data
to take. When choosing a path it is possible to make a decision to use a
short path or a different longer, yet quicker path. As network conditions
change, paths for data to take can be optimized so that data continues to
flow smoothly.

Speed: Slow

Speed: Fast
Congestion: Low

Congestion: High

Speed: Slow
Congestion: Low

Speed: Fast
Congestion: Low

Speed: Fast
Congestion: High

Speed: Fast
Congestion: Low

Speed: Fast

Congestion: Low @

Figure 1.3: A Small Network

In Figure 1.3, a piece of data on the network is trying to get from router
A to router F. When the data reaches router B, the path for the packet must
be determined. With knowledge of the size of the packet an efficient route
based upon the speed of the line can be calculated. The chosen path may
direct the data across the shortest route on the network, which would be by
traveling from A to B to F. An alternative option is for the router to have
optimized the route based upon the path with the fastest interconnections,
this time going from A to B to C to F. This route lets the data flow at a higher
speed across the network, ultimately resulting in a quicker arrival rate. A
third alternative is presented in Figure 1.3. By deciding upon a route using
line speeds and congestion on the network, a better optimized route can
be produced. Speed of lines is fixed on a network, however congestion is
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dynamic, therefore routes can vary at all times. This optimized route might
direct a packet from A to B, Bto C, Cto D, D to E, and finally E to F.

To implement algorithms, routers calculate a path and store it in a table
so that when a packet is to be sent its route can quickly be looked up and
the most efficient route can be chosen[6]. Figure 1.4 shows an example of a
router and a possible routing table. The router’s table contains information
on how a packet of data will navigate through the network. To get from
router 1 to router 5 the best way to travel would be via route B.

Routing Table

To Fastest Path
G

Qo v & |w]| v ~lo
al»|wg|la|m

Figure 1.4: A Sample Routing Table

Choosing an effective routing algorithm to generate paths for storage in
routing tables, will result in an increased rate of flow on specific network
structures[13].

PPL Corporation[2], a power company native to Allentown, PA uses
a network layout which is quite different from the average local network
topology. Most local networks are pyramid shaped with 1 node connect-
ing the network out to a larger global network called the Internet. They
are designed this way as it provides an easy and effective way of securing
a network from exposure to the Internet. By securing one single computer
you can now secure all computers from external connections. At PPL, the
network layout must join several offices and power plants together, to en-
sure that each office has a fast and reliable connection to the others. Each
larger site has a pyramid shape below it, which is connected to the other
larger sites by first joining to the ring.

In Figure 1.5 the network resembles a ring in the center. From the nodes
on the ring, structures which maintain a general pyramid shaped structure
are connected. These pyramid-like topologies are present at an individual
site. Essentially, each pyramid portion is a local network with a ring node
at the top of it.
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Figure 1.5: Network Ring with sub tree’s

Many routing algorithms exist. and in our research we examined how
very simple algorithms effect data flow on a very specific and unique net-
work layout such as PPL’s. To perform this research, we wrote and verified
a computer simulation. Using this simulation software, we compared algo-
rithms on a network with a topology like PPL’s while varying traffic pat-
terns. We used simple algorithms that optimized based on shortest path,
on speed of connections, and also one that optimized for connection speed
based upon congestion.

Our original thought was that the congestion optimization algorithm
would be the best of the three, despite the network topology. After per-
forming the simulation, we found that with small packet sizes. optimizing
based upon shortest route was sufficient. When using varying packet sizes,
the fastest path algorithm was the most efficient. The congestion optimiza-
tion algorithm used was actually the least efficient under heavy traffic pat-
terns. This is because routes generated by it were very long and the path
wasn’t dynamic as the congestion on the network was. Because of our spe-
cific topology, none of the algorithms can truly excel because of the ring. We
concluded that the center ring in our topology using any routing algorithm
would act as a bottleneck. The center ring cannot be easily routed around
if it becomes congested. To reduce the chance of congestion on the ring the
ring speeds must be sufficiently fast to handle all possible traffic loads put
on it at ring nodes.
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Chapter 2
Related Works

No single algorithm is the most effective on all network topologies, since
the layout effects bottlenecks on networks. Due to this, research on new
topologies is constantly being published. Algorithms are tested for increases
in data transfer speeds on specific topologies. Companies like PPL, stand to
gain by implementing a routing algorithm which is most effective on their
specific network topology.

The efficiency of a computer network due to the use of a specific rout-
ing algorithm may be measured by monitoring statistics gathered on both
routers and from PC’s connected to the network. On computer networks,
efficiency is measured by the time to transmit an individual packet of data.
To determine an efficient network, a study should be done that looks at the
packet flow per second onto the network, the amount of packets waiting to
be processed by routers, the amount of routers a packet must travel through
(commonly referred to as hops), and the speed, packet sizes and usage rates
of the routes taken|[6].

There have been many approaches to research in area of networking
and routing on certain topologies. Our research is similar to much of the
research found on the study of algorithms on network topologies. Our re-
search surrounds the discovery of how specific routing algorithms work on
the unique topology such as PPL Corporations network. In our simulation,
we studied 2 algorithms which optimized solely on layout of the network
and one algorithm which chose paths by taking network congestion into
consideration. These two types of algorithms are commonly studied, but
research of their use on our specific central ring based network topology
has not been published.

Ishai Aroya, Ilan Newman and Assaf Schuster studied hot-potato rout-
ing algorithm on a hyper-cube and high-dimensional meshes[3]. In hot

15
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potato routing, queues at each router are not implemented. A packet is
constantly passed around the network until it reaches its destination so that
clogs do not occur at the routers.

Work with specific algorithms was also performed by Michael Mitzen-
macher. He researched Greedy Algorithms on array based networks[10].
Greedy Routing algorithms choose the shortest route between the start and
end node on which a the path which packet will travel. A greedy algorithm
is one of the simplest algorithms to implement. Our research included the
study of greedy routing algorithms on our specific topology.

Similar research was done by Xiaofan Yang, Graham M. Megson and
David J. Evans[14]. They looked at the same type of shortest path rout-
ing algorithms as Mitzenmacher, but observed the algorithm on a network
topology based upon fully connected cubic networks.

Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan and Harald Racke
studied adaptive routing algorithms on several network layouts[4]. They
did not however look at the use of these algorithms on our specific network
topology.

Further work was done with adaptive algorithms by B. Zhang and H.T
Mouftah. They studied a shortest path routing algorithm that also takes into
account bandwidth constraints[16]. This routing algorithm used in their
research is comparable to the first type of adaptive algorithm that we will
study on our network topology. However, Zhang and Mouftah designed
their algorithm with the assumptions that bandwidth restriction is in place
lines due to the use of a protocol that attempts to ensure quality of service.

Adaptive algorithms were also examined by K. Chi, C. Yang and X.
Wang. They wrote about using shortest path and maximum rate distribu-
tion and its effects on common Internet topologies[5]. The two adaptive
routing algorithms which we will be studying are modeled closely around
the same ideas presented by Chi, Yang and Wang. The topology which they
performed their research on was common Internet architecture. Chi, Yang
and Wang’s research was used a specific type of data transmission called
multicasting. In multicast transmissions, a single message is sent to the
network and the network delivers a copy to each of the recipients of the
multicast.

Research on networks that share similarities in layout to our specific
topology were also found. Chun-yen Chou, D.] Guan, and Kuei-lin Wang
looked at routing on double-loop networks[15]. Their research examines
routing on a redundant ring structure. The research done by Chou, Guan
and Wang looks to find an efficient way to balance data transfer about the
double ring loop.
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The pyramid shape structures that are connected to our central rings
nodes have also been studied by M. R. HoseinyFarahabady and H. Sarbazi-
Azad[8]. They examined a generalized pyramid-shaped network topology.
The pyramid like structures are formed by connecting a single head node
to an increasing number of devices as the network grows larger. M. R. Ho-
seinyFarahabady and H. Sarbazi-Azad’s research used algorithms that were
optimized to take advantage of the pyramid shape of the network.

Overall, our research provides an in depth look at basic routing on a
complex network topology. We present that on our specific topology under
certain conditions it is more efficient to use a specific type of algorithm.
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Chapter 3

Simulating a Network

3.1 Introduction

To run tests and gather statistics on this specific type of topology, experi-
ments could be run on an actual network while varying different properties
on the network. Since PPL would not permit experimentation on their own
network and creating an actual network large enough to simulate this is cost
prohibitive, a computer simulation was developed. The computer simula-
tion enables us to model how a network functions. Using the simulation,
we can run series of tests on our specific network topology and gather data
on each of the tests for later comparison.

3.2 Model Description

The simulation was designed with the intention of modeling a specific
network topology. The simulation software can be altered to allow further
experimentation on networks of the unique shape studied. The topology
that we used in our simulation was designed to resemble the unique layout
of a network like the PPL Corporation maintains.

PPL’s network is built off a central ring that has a very high data trans-
fer rate. In recent years, technologies that enable fast interconnection speeds
have been developed[6]. Since not all systems attached to a network need
such a high speed connection, the larger sites on the PPL network only use
these high speed links to connect to other larger sites. The large sites link
together to form a ring at the heart of PPL’s layout. Data sent from one
large location to another on the PPL network travels to the “top” of its net-
work and then onto the ring. Once a data packet arrives on the ring, it is

19
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transported at a high rate of speed to the node on the ring on which its
destination is located beneath.

A generalized version of PPL’'s network topology is represented in Fig-
ure 3.1. The actual topology used in our simulation however was much
larger and was more complex then the simple example shown in Figure 3.1.
Our topology used in simulation has more nodes on the ring, with larger
and deeper networks connected to the ring. The chance of an interconnec-
tion occurring between two routers within a network was 50%. The Line
speeds were evenly split between 10 and 100 Mb/s connections.

Speed: 100 Speed: 10 Speed: 100
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16 18 24
K H Ned: 100&3&1: 10
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Speed: 10
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Figure 3.1: The Generalized Network Topology studied

By examining this specific topology, we determined which algorithm
from a selected set was the most effective on networks with a layout of this
type. The ring being located at the center of the network topology is what
makes this a unique and interesting problem to research.

In Figure 3.1 computers are shown by having only one connection to a
single router. This assumption in our network layout excludes computers
with more than one network connection. Routers are all nodes in between
that connect to 2 or more nodes.

We make the assumption that connections will not fail and data can al-
ways reach from any given node to any other node to which it is connected.
In reality, connections can fail and nodes can be unroutable. In our research,
meaningful data was gained without modeling these traits.

Speed: 100
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To model a network as realistically as possible, we considered what traf-
fic on the network would look like. By using a log of traffic data from an
actual network[1]. we were able to observe a general pattern that occurs on
anetwork. The packet log shows the packets sizes that crossed the network.
The maximum packet size was 1500 bytes. The log shows a large amount
of very small packets, a small peak at around one third of the maximum
packet size, and finally a large peak at the maximum packet size. Then we
decided that for each algorithm tested we would run the simulation with
two different forms of traffic. The first uses a varied packet size based di-
rectly upon the distribution shown in the log. The second is an average of
the size of all packets found in the log. The distribution of packet sizes uses
a function which closely models the actual data shown in the log. Figure
3.2 shows the sizes of packets found in the data set used to determine the
values modeled.

Packet Distribution Percentages
60 —

50 -

30 -

Percentage of Packets

20 -

10 —H

N et nee—

T 1
o 500 1000 1500 2000
Size of Packets in Bytes

Figure 3.2: Logged network packet distribution

In the simulation, traffic moved from one computer to another. The
source and destination we determined by selecting a computer from the
set of all computers. Each computer had an equal chance of being selected.

The route for the data to travel is generated upon a specific algorithm
that is being run that simulation. Since the study is of the unique network
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topology and how routing algorithms effect it, we chose to use 3 simple
routing algorithms. Two of our algorithms choose paths, which are inde-
pendent of traffic on the network for all packets that go from point A to
point B during a simulation. The third algorithm dynamically chooses paths
along the network based upon traffic load for each of the packets sent.

The first algorithm dictated that data should always take a path in which
it travels between the minimal number of routers to reach its desired desti-
nation. The second algorithm dictated data travels over the fastest connec-
tion available. The third algorithm finds a route with the least number of
hops from start to destination over the least congested of the connections.

Figure 3.3: A sample network with various packet wait times.

Shortest Distance: In this routing algorithm, the path is selected based
on the path with the shortest amount of hops (connection traverses from one
router to another). It does not take into account the speed or wait at each
router along the way. For example, in Figure 3.3 the shortest path algorithm
will choose a route with 3 hops between router A and F. The path chosen
would be from A to B, Bto Gand G to F.

Fastest Connections: In this routing algorithm, the path is determined
by selecting connections based upon speed and then selecting the path that
has the fewest slow connections. It does not take into account congestion on
a connection or look to find the least number of hops from one destination
to another. In Figure 3.3, faster connections are designated by larger lines
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that connect them. A route from A to F by choosing the fastest route for the
network (shown in Figure 3.3) will choose to route over the fastest connec-
tions with the shortest amount of hops. The path this algorithm will choose
isfromAtoB,BtoCandCtoH,HtoF.

Congestion Sensitive: In this routing algorithm, the path is determined
by choosing a connection based upon speed of a connection and a compar-
ison of its health to the health of other paths. “Healthiest” is defined by the
fastest connections with the least backlog that might impede data transfer.
Impeding data transfer was weighted by the number of packets waiting to
be processed by the next router multiplied by that specific router’s average
rate at which it processes packets. Figure 3.3 shows a route from A to F that
would be chosen when using this algorithm. Routers G and H are busy due
to having 3 packets in queue and also because these packets are large. Since
G and H have high congestion, the algorithm will attempt to avoid these
nodes if another path with less “wait time” is found. An optimized route
using this algorithm is traveling from A to B, Bto C, C to D, D to E and
tinally E to F, successfully avoiding the congestion.

When a data packet reaches its destination, it is assumed received and
removed from the network. We assume that all data is intact and that all
transmissions are perfect. Because of this, we do not need to verify the data
on arrival and retransmissions are not modeled. Our modeled routing pro-
tocol is a generalization of most networking protocols for this reason. This
allowed us to abstract the details of a specific protocol out of our simulation.

To run the simulation, we generated a single-network topology that was
representative of a network like PPL Corporation’s and ran the simulation
with the following parameters:

The length of the simulation was 30 seconds. Packets arrived on the net-
work with a rate of 2857 packets per second. The rate of the packet arrival
was chosen by looking for a distribution in which the center routers began
to experience congestion. Packet size was varied between static and dis-
tributed sizes. A route’s beginning and destination were chosen by a pro-
cess in which all computers on the network have an equal chance of being
selected.

3.3 Simulation Design

The simulation we designed is modeled after a discrete-event simulation[9].
In a discrete-event simulation, each change in the simulation occurs at a spe-
cific and unique time. Simulating systems in this manner makes it easy for
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a computer to calculate effects of interactions since all items occur in a spe-
cific order. In our simulation, a packets arrival and departure times are each
separate events. As packets are added to the network, the amount of events
for the simulation to maintain grows.

A model of the network for the simulation was created. Using C++,
we created a network topology data-file generator. Code for this piece of
software is available in the first section of the appendix. The software takes
basic parameters on the size of the network it should create and then builds
a network around a central ring of user specified size. Upon completion,
the network and its interconnections are written to a data file. The user has
the ability to alter the amount of routers in the circle, the lower and upper
limits on the width, the depth on each of the tree’s that connect to the central
ring, the probability of interconnection within trees, and the probability of
connection speed’s being designated slower then others.

Upon completion of the ring software, we had to create and choose a
network size that both resembled PPL’s topology and was small enough to
run the simulation on in a feasible amount of time.

The simulation, also written in C++, was designed to keep track of all
packets on the network and the order that events would occur to deliver a
packet to its destination. The code for the simulation is shown in the second
and third section of the appendix. It first loads the model of the network
and then creates a queue in memory for every router on the network. In
our simulation, when a packet is in the process of being transferred other
packets queue up behind it and wait until the router is free to service the
other packets. The simulation also manages an event queue. The event
queue stores a list of all packets that are at the front of a routers queue on
the network. These packets in the event queue are currently being used by
the simulation and are being moved from router to router.

The simulation starts by generating a packet. Once its starting and end-
ing computers are chosen, we generate a route for the packet to travel. We
use Dijkstra’s algorithm, which is used for finding paths on graphs, to gen-
erate the path the packet will take. Each routing algorithm is implemented
based upon Dijkstra’s algorithm.

To achieve variation in routes, each algorithm, gives different values to
each path on the network. In the shortest distance algorithm each path is
assigned a value of 1. To find the shortest path, Dijkstra’s algorithm finds
the path which the sum of values for each connection is the least. When
generating a path looking for connection speed, the inverse of the connec-
tion speed is assigned to each part of the network. The path’s speed values
must be inverted, so that Dijkstra’s algorithm can find the fastest path. The



3.3. SIMULATION DESIGN 25

slowest path would have the lowest speed values. The implementation of
the congestion sensitive algorithm assigns values to each path that are sum-
mations of the connections speeds and the amount of wait time that would
be encountered at each router in its path.

The packet is then inserted onto the network. The arrival time of the
packet at the next router is generated based upon the size of the packet and
the line speed it must cross at. This event is scheduled. We then choose a
time for the next packet arrival and schedule that event. The event-list is
sorted based upon time so that events will occur in the proper order. With
2 events now in the event queue, we choose the event which will occur first
then process it. Packets progress through the simulation by moving from
one queue to the next along its pre-calculated path. When a packet reaches
its destination computer, it is removed from the event queue and statistics
about that packet are gathered. This is repeated thousands of times for a
large number of packets so that congestion on the network is created and
the router queue’s will have multiple items waiting to be processed.

As network simulations sizes grow, it is important to manage the data
effectively by maintaining separate queues for events currently processing
and events that are queued. The effective management of this data was
crucial to allow the simulation to run in a reasonable amount of time.

Throughout the development of the simulation, we constantly verified
that any changes made continued to ensure accuracy. When developing a
large piece of software it is crucial, since not every single features will be
tested during an actual simulation. A large simulation is also extremely
hard to verify by hand. Because of this, we created small basic tests so we
can ensure that each small portion of the simulation works as it should.
When these smaller pieces inter-operate the simulation should then work
tully as it should. Throughout the development process these tests proved
crucial to detecting and correcting errors. The suite of tests we created de-
rived from an original base case that was suggested in Leemis” book on
discrete event simulation[9].

Figure 3.4 is a basic test that moves a single packet from one computer
to another. The completion time for this packet was the size of the packet
divided by the speed of the line.
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Figure 3.4: A simple single transfer of a packet between 2 computers

Building upon this test, we next ensure that the sending and receiving
of data by two different computers is actually a disjoint operation and that
they do not interfere with one another. Figure 3.5 shows the original 2 com-
puter network with traffic now moving in two directions.

Figure 3.5: A simple 2 computer bidirectional packet transfer

The next step was to create a larger network that features a router in
between the two computers. Figure 3.6 shows a central router which will
be responsible for relaying packets between the two computers. As packets
arrive closely in time, the packets will be queued at the central router. Once
the central router completes sending a packet it will continue until its queue
in clear.

é %

Figure 3.6: Packets are sent across a network in both directions at the same
time

The test performed in the network in Figure 3.6 is the basis for all com-
plex network layouts. We then increased the example shown in Figure 3.7
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to have several additional computers with one central router. By adding ad-
ditional central routers, this very basic network would become a basic ring
topology network like the one which we studied.

Figure 3.7: Packets will be queued at a single central router before reaching
the destination

Figure 3.8 demonstrated queuing at multiple central routers. Packets
have two places in which they can become congested based upon the flow of

the data. This final test assures that the simulation is moving a packet across
a multiple-hop path based upon a path chosen by the routing algorithm.

N
NN

Figure 3.8: Packets will travel and be queued at multiple central routers
before reaching their destination

The success of these tests insures that the basic way in which packets
transfer from one router to another is correct. With the knowledge that
basic transfers are correct, we state that the simulation is correct for larger
more complex networks. Larger networks are derived from a combination
of smaller networks.
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These tests were designed to be simplistic so that the results could be
checked and verified by a human. The final results from a complete running
complex network simulation would not be easily verified by a human.

Creation and verification of a software simulation was crucial to accom-
plish the research. A large portion of the time to conduct this experiment
was spent on developing the custom simulation software. The software de-
velopment and verification life cycle for complex software is an important
part of the process to ensure that the resulting software works as intended.

The simulation software underwent extensive debugging and modifica-
tion session so that the final simulation could be run correctly in an optimal
amount of time, with limited computing resources.

3.4 Results

A total of six experiments were conducted. The first set of three were
conducted using varying algorithms and a static data-packet size which was
chosen by averaging the size of all packets in the distribution presented in
Figure 3.2. The second set of three used the same algorithms and packet
sizes that conformed to the distribution seen in Figure 3.2.

First, we chose to use a large static packet size, since the abnormally
large packet size would cause the network to become heavily congested.
On a congested network, each router has a long wait queue till it can de-
liver a newly arrived packet. The congestion optimization algorithm should
optimize around this if possible. The second varying packet size distribu-
tion closely mimics the type of traffic that would be seen on a real network.
By carefully handpicking these two packet size distributions we are able to
see the effects of the algorithms under both a normal and stressed network
condition.

It is important to note that a network with a low level of traffic (such
that no packet will get queued at router), both the line speed and conges-
tion sensitive algorithm are equally effective. The congestion algorithm will
only make optimizations over the line speed algorithm when when traffic
on the network could hinder a packets delivery time.

If a network was to have a homogeneous connection speed, the best-
case scenario when not considering traffic load is the shortest path. Because
of the design of the algorithms, when the shortest path and line speed al-
gorithms are used on a homogeneous network they will also be equally as
effective. If the traffic level is low (such that no packet is being queued),
then all 3 algorithms are equal.
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Figures 3.9, 3.10, and 3.11 show the number of hops that each packet
had to take under the shortest path, quickest path, and congestion sensitive
quickest path algorithms

Percentage of Packets vs Number of Hops per Packet
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Figure 3.9: Packet hop percentages using shortest distance algorithm and
tixed packet size
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Figure 3.10: Packet hop percentages using line speed optimized algorithm
and fixed packet size
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Percentage of Packets vs Number of Hops per Packet
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Figure 3.11: Packet hop percentages using congestion-optimization algo-
rithm and fixed packet size

We can see a variation in the number of hops between all three algo-
rithms. The shortest hop and line speed algorithms have a very similar
shape while speed optimization is only heavy in its upper range. The sec-
ond peak that occurs is pushed farther out in the speed optimization and
congestion optimization algorithms indicating a longer path taken by each
packet. The first peak, which occurs at three hops for each of the algo-
rithms, is representative of packets traveling to neighbors on the same local
network.

Figures 3.12, 3.13, and 3.14 show the time it took for a packets to com-
plete its travel across the network using the shortest path, quickest path,
and congestion sensitive quickest path algorithms
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Packet Density vs Packet Transfer Time
200 ~
180 -
160 ~ —

120 ~
100 ~

Density

60

20 -
0 T T T 1
0 0.005 0.01 0.015 0.02

Packet Transfer Time in seconds

Figure 3.12: Time for packet delivery using shortest distance algorithm and
tixed packet size
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Figure 3.13: Time for packet delivery using line speed optimized algorithm
and fixed packet size
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Packet Density vs Packet Transfer Time
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Figure 3.14: Time for packet delivery using congestion optimization algo-
rithm and fixed packet size

Figure 3.12 has a large number of packets with completion times be-
tween 0 and .0025 seconds. The amount of packets arriving at times in ex-
cess of .0025 seconds steadily declines past that point. Under the shortest
distance algorithm, the largest number of static packet sizes at a completion
time was moved out farther compared to the other two algorithms. The
speed and congestion optimization algorithms offer an evenly distributed
completion time for packets. These figures show that the shortest distance
algorithm is the most efficient when using a fixed, larger packet size.

Tests were also run with the same three algorithms on a network in
which the packet size was based upon a distribution of the observed packet
sizes shown in Figure 3.2.

Figures 3.15, 3.16, and 3.17 show the amount of hops each packet took to
reach its destination; using the shortest path, quickest path, and congestion-
sensitive quickest path algorithms.

0.02
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Percentage of Packets vs Number of Hops per Packet
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Figure 3.15: Packet hop percentages using shortest distance algorithm and
varied packet size
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Figure 3.16: Packet hop percentages using line speed optimized and varied
packet size
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Percentage of Packets vs Number of Hops per Packet
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Figure 3.17: Packet hop percentages using congestion optimization algo-
rithm and varied packet size

A surge of routes utilizing a large number of hops is shown in Figure
3.17. Since the algorithm optimizes its route based upon congestion on the
network as it reaches a congested area, the path is routed around it utilizing
a higher number of hops.

A large spike in the number of hops for a packets completion is shown
around ten hops in all hop charts shown. Next to that, all charts of hops
show a low area around two and four hops. These same general traits also
occurred when using the fixed packet sizes. The routes generated in each
simulation are the same between both fixed and variable packet sizes under
the shortest distance and line speed algorithm. Using the congestion algo-
rithm the routes will differ under a heavy load. By comparing the amount
of hops from both the fixed and variable packet size experiments, we can
see that using the congestion optimization algorithm yielded on average
the same amount of hops.

Figures 3.18, 3.19, and 3.20 show the time it took for a packets to com-
plete its travel across the network using the shortest path, quickest path,
and congestion sensitive quickest path algorithms using a distributed packet
size.

18



3.4. RESULTS 35

Packet Density vs Packet Transfer Time
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Figure 3.18: Time for packet delivery using shortest distance algorithm and
varied packet size
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Figure 3.19: Time for packet delivery using line speed optimized and varied
packet size
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Packet Density vs Packet Transfer Time
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Figure 3.20: Time for packet delivery using congestion optimization algo-
rithm and varied packet size

Figure 3.18 shows a peak just before .005 seconds of transfer time and
shortly after the density of packets with higher traffic times trails off. This
is different from the same experiment run with a fixed packet size. Under
the fixed packet size this algorithm seemed to clearly excel. With the vari-
able packet size this algorithm is now more on par with the line speed and
congestion optimization algorithms.

The line speed sensitive algorithm has the majority of its packets with
completion times of less then .005 seconds when using the distribution of
packet sizes.

An interesting point to notice is that in Figure 3.20 the density of the
curve’s tail as the packet transfer time exceeds .001 it begins fades quickly.
In comparison, this indicates that the algorithm has less packets completing
with long time.

3.5 Discussion

From the simulations that were run, several conclusions can be drawn
from the data. An interesting point to note is that in all cases simulations
had a peak in transfer completion time occurring before .005 seconds. The
shape of the curve that surrounds that peak was also similar. After .005
seconds the densities of packets completed at those specified times begins to
fall. This is significant, because it shows that a large amount of the packets
are being completed in a short time, and that the more dense the tail of the

0.02



3.5. DISCUSSION 37

curve the more packets are taking longer. A small tail with large peak early
designates the most efficient algorithm.

By looking at Figures 3.18, 3.19, and 3.20 the general shape of completion
times is similar. The line speed optimizing algorithm’s completion times
shown in Figure 3.19 start to become dense and at a faster rate then those
from the shortest path algorithm. Completion times using the shortest dis-
tance algorithm are shown in Figure 3.18. The shortest path algorithm was
the most efficient when using a fixed large packet size on the network. This
algorithm causes the packets to leave the network in the fewest amount of
hops reducing traffic and resulting in lower packet completion times.

When comparing completion time between the line-speed algorithm and
the congestion-optimization algorithm completion times, the data shows
that more packets finished sooner when routing based upon line speed then
when routing based upon congestion of the lines. This is shown by Figure
3.19 and 3.20. Figures 3.16 and 3.17 show an explanation for why more
packets finish sooner under the line speed algorithm than with the con-
gestion algorithm. The congestion-optimization algorithm also shows an
increased number of hops versus the line speed algorithm. This is due to
the fact that under the congestion algorithm the routes are optimized based
upon traffic at the time of a packet’s creation. The route originally calcu-
lated on a network with high traffic congestion levels is not necessarily the
fastest. After the first hop of the data on the pre-chosen route, the routers
that it chose to navigate due to to congestion, may now be clear and the
routers on the current path may be congested. Thus a large portion of pack-
ets using this algorithm take longer to reach their destination than with the
line speed algorithm.

Due to the design of the tested algorithms, the line speed algorithm and
the congestion optimization algorithm had a higher hop count then when
using algorithm one on the same network. This is a result of the layout of
the network, the amount of interconnections and the speeds of the connec-
tion on the network. A comparison of the hop counts is shown in Figures
3.15, 3.16, and 3.17. Since both these algorithms optimize their paths, they
have a high probability of being larger than the same route chosen by short-
est path algorithm. For every one 10Mb /s connection found in our network,
the line speed and traffic optimization algorithms have a choice of using up
to ten 100Mb/s connections to replace one slower connection, yet still re-
maining equally efficient.

When using the fixed large-packet size, the efficiency of the congestion
algorithm was much worse then expected. Figure 3.14 shows a higher den-
sity at a higher time than that of the data from the least distance algorithm,
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Notable Percentages of Hops wusing a variable packet size
Number Hops Shortest Path Quickest Path Least Congested Path

3 13.44 13.44 13.44
8 21.42 7.81 10.28
9 13.60 7.06 12.92
10 11.89 16.27 14.06

Table 3.1: Notable Percentages of Hops Comparison between algorithms
with variable packet size

shown in Figure 3.12. The reason is that the congestion-algorithm’s path
is optimized upon creation of a packet. However, after a newly scheduled
packet makes a movement between two routers, the network is in an en-
tirely different state of congestion. The previously optimized path may
now be inefficient. When large packets enter the network at a high rate,
the routers along the network quickly become backed up. With all routers
backed up, the most efficient path at any given time is really inefficient. This
leads to the longer packet completion times shown in Figure 3.14.

With a fixed, large-packet size, the shortest path algorithm completion
times (shown in Figure 3.12), were lower compared to the other two algo-
rithms. The benefit came from the ability of the shortest path algorithm to
remove packets from the network in the least amount of hops. We demon-
strated that the congestion algorithm is generally not effective compared to
the line-speed algorithms. Both algorithms, however, create longer paths
for a packet to take on our network. With a large packet size, the network
becomes saturated easily. To reduce the congestion on the network, the
most efficient way it to move large packets to their destinations without
having the need to clog more router queue’s any more then absolutely nec-
essary.

The significant number of hops that packets took during each of the
three variable packet size simulations is displayed in Table 3.1. In each sim-
ulation, because of the specific topology used, the layout of the network and
the percentages of interconnections we saw two peaks. The first was when
packets were traveling on their local network to a destination on the same
network. The second spike came when a routing algorithm had to direct a
packet across the ring. The large number of packets in these two specific
amounts of hops is due to the equal distribution of destinations that pack-
ets must traverse to. These same results occur when looking at the amount
of hops used in a fixed packet size simulation. Table 3.2 shows the signifi-
cant percentages of hops that packets took in a simulation which used fixed
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Notable Percentages of Hops wusing a fixed packet size
Number Hops Shortest Path Quickest Path Least Congested Path

3 13.44 13.44 13.44
9 13.60 7.06 12.99
10 11.89 16.27 13.81

Table 3.2: Notable Percentage of Hops Comparison between three algo-
rithms with fixed packet size

packet sizes.

When a network has a low percentage of interconnections between lev-
els, a decrease in packets making their journey in 2-3 hops should be seen.
It would also lead to an increase in packets taking four hops to traverse to
other computers on the same local area network portion of the overall net-
work. By studying the topology, we can show the least number of hops on
the entire network and an average on what the least number of hops would
be for packets to travel on a pyramid-shaped portion of the network.

3.6 Conclusions

The ring, while the most unique part of our network, causes the most
problems in routing efficiency. The ring acts as a bottleneck for all packets
that need to travel to other networks on the ring. If traffic builds up at the
routers on the ring, it can not be effectively routed around. The ring only has
two possible paths to travel around. Because of this feature in our specific
topology, none of the algorithms can truly excel at routing.

Routing algorithms have the chance to optimize on each smaller net-
work off the ring. Once a packet enters the ring portion of the network only
two distinct paths around the ring exist. The solution to this problem is to
ensure that the ring connection speeds are sufficiently high enough so that
the local networks could not put packets on the ring at a fast enough rate to
cause congestion. As more smaller networks are connected to the ring the
ring speed must be raised. Redundant ring connections may also alleviate
some of the problems caused by this specific topology feature.

At first glance, we thought the congestion optimization algorithm would
be much more efficient then the other algorithms we tested. However, in
the congestion sensitive algorithm, traffic on the network is dynamic and
the route, after it is generated, is not. With a longer and static route, as com-
pared to the other algorithms, the congestion sensitive algorithm actually
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performs worse under our tested traffic intensities.

Routing algorithms are effective in optimizing the way in which data
traverses a network. It must be stated that this study in no way concludes
that a perfect or a “best” algorithm exists. It simply shows that on this spe-
cific topology, with these specific test conditions, the line speed based opti-
mization algorithm and shortest distance algorithms are the most effective
for variable and fixed packet sizes. The central ring constantly presents a
unique challenge in effectively routing on networks with the studied topo-
logical shape.
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Future Work

While performing the research many questions arose that because of
time restraints we were not able to fully explore. These topics would pro-
vide meaning full extension to the data results and allow us to better under-
stand the effects of routing algorithms and this specific network topology.

Because of the time it took to implement and verify the simulation we
were not able to gather all the data we would have liked. Using the simula-
tion software as it was configured for the above experiments we would like
to simulate the network under varying traffic intensity levels. This would
allow us to gain a better understanding of the performance of each algo-
rithm on this specific topology under an assortment of network conditions.

The center ring of the network is one of the more interesting features in
the topology researched. By increasing connection speed between routers
on this ring, a percentage of the packets traveling on the network would
see a gain in speed when traveling across the ring. Research could be done
as to what levels of traffic on the network would the enhanced ring speeds
have an effect on the completion time of packets. With a fixed amount of
smaller networks off the central ring, only so much traffic can be produced
by the smaller network. Additional research could be done to determine at
what speed of the ring would make it impossible for it to ever become fully
congested.

By choosing a specific algorithm to use just on the ring, we could also
effect the completion times of the packets. In our simulations, the routing
algorithm on the ring was the same as used on networks connected to it. If
improvement could be shown, which traffic levels on the network would
this change affect in a positive manner?

Algorithms on the rest of the network topology can also be varied. Our
experiment surrounded three simple routing algorithms. The third of which

41
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optimized routes not only on length, but also speed, and congestion level at
routers along its path. It was effective for networks that are under moderate
load. With a very high capacity on a network, this algorithm may become
less successful in optimizing the routes of packets. Running simulations
with this algorithm would allow us to determine if a cutoff of effectiveness
exists. We started to see this with during our simulations when using a large
tixed data packet size. Would this same problem occur on a network with
heavier traffic using the distributed packet sizes?

Testing of additional network routing algorithms on the network would
allow us to see if a better solution exists for improving the effectiveness of a
specific topology. By modeling an algorithm that at each hop the route was
recalculated based on global conditions, we may be able to find an optimal
routing algorithm. While we feel this would offer the best possible route
for a packet to travel at any given point in time, this type of algorithm is
not feasible to implement in present day routing hardware but may reveal
other interesting properties of the ring’s effect on our topology.

The contributions of the current research gives new insight into the effec-
tiveness of the ring architecture for interconnecting smaller local area net-
works. Our research has shown that algorithm choice can have a large effect
on the effectiveness of a network and that no one algorithm is the perfect
solution in all cases. Our algorithms each performed effectively under cer-
tain conditions. When designing a network based upon a topology such
as the one used in PPL’s network, routing algorithm’s should be studied to
maximize efficiency of the network.
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Appendix

5.1 Network Generator Source

[ x %
* Network File Generation and parsing software
* Written by: Tyler Worman
* Email: worman@cs.moravian.edu

*/

#include "fileClass.cc"
#include "rvgs.h"
finclude <iostream>
#include <fstream>
#include <string>
#include <vector>

int nodeCounter = 0;
void createNode (int treelID, int level, int depth, router* parent,
networkx myNet, int widthLow, int widthHigh, int probSpeed);

void makeConnection (router* routerl, router* router2, int probSpeed);

using namespace std;

int main(int argc, char *xargv) {
//argv[l] = filename
//argv[2] = circle of tree’s
//argv[3] = width lower
//argv[4] = width upper
//argv[5] = depth lower
//argv[6] = depth upper
//argv[7] = inter connection tolerance in percent style aka 70
//argv[8] = Probability of 10/100 connections in percent style aka 70
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network *myNet = new network();
int nodeID = 0; //Node counter when creating files.
for (int i =0; i < atoi(argv[2]); i++) {

//Create a root node

routerx newRouter = new router();
newRouter->idNum = nodeCounter;
newRouter->treelID = 1i;
newRouter—->levellID = 0;
nodeCounter++;

// Place node on the stack.
myNet->nodes.push_back (newRouter) ;
myNet->circle.push_back (newRouter) ;
//Generate a target depth built tree recursively.
int tempWidth = Equilikely(atoi(argv[3]),atoi(argv(4]));
for (int J =0; j<tempWidth; J++) {
int tempDepth = Equilikely(atoi (argv[5]),atoi(argv[6]));
createNode (i, 1, tempDepth, newRouter, myNet,
atoi(argv[3]),atoi(argv[4]),atoi(argv(8]));
}
cout << "Connecting the Loop" << endl;
//Restart loop and generate another connecting it
//to the last node in the circle.

if (14 !'= 0) {
makeConnection (myNet->circle[i], myNet->circle[i-1], atoi(argv[8]));
}

//This is the last node in the tree... connect it back to the

//first and complete the ring

if (myNet->circle.size() - 1 == (atoi(argv([2]) - 1) && i !=0) {
makeConnection (myNet->circle[i], myNet->circle[0], atoi(argv[8]));

}

cout << "Connecting to others in tree" << endl;
//connect members to each other within this tree
vector<routerx>::iterator it;

for (it = myNet->nodes.begin(); it !'= myNet->nodes.end(); ++it)
if ((xit)->treeID == 1) {
vector<routerx>::iterator it2;
for (it2 = myNet->nodes.begin(); it2 != myNet->nodes.end(); ++it2)
//check level
1f (((*1it2)->treelID == 1) && ((*xit)->levellD == (*x1it2)->levellD))

double probabil = Equilikely (0,100)/100.0;

if (probabil >= atoi(argv[7])/100) {
//check connections
vector<connectionx>::iterator it3;

bool isFound = false;

for (it3 = (xit)->routes.begin();
((it3 != (%it)->routes.end()) && (isFound != true));
++it3) |

if ((*it3)->toNode == (*it2)) {

{

{

{
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//a route already exists lets exit this loop
isFound = true;

}

if (isFound != true) {
//Add a route.
bool iskEdge = false;
vector<routerx>::iterator itEdges;

for (itEdges = myNet->edges.begin();
|

itEdges != myNet->edges.end();
++itEdges) {

if(((xitEdges)—>idNum == (xit2)->idNum) ||
((*itEdges)->1idNum == (xit)->1dNum)) {

isEdge = true;

}

if (isEdge == false) {
makeConnection ((*it), (*it2), atoi(argv([8]));
}
} else {

//do nothing a route already exists.
}
} //probabillity
} //Check for tree level
} //for to loop through the second set of nodes
} //loop through all nodes

}
//Lets print out the results to our file
ofstream fileHandle(argv[l], std::ios::out);
vector<routerx>::iterator it4;
vector<routerx>::iterator it6;
fileHandle << myNet->nodes.size() << " ";
fileHandle << myNet->edges.size();
vector<router*>::iterator itTemp;
for (itTemp = myNet->circle.begin();
itTemp != myNet->circle.end();
++itTemp) {
//Write edges to file
cout << " " << (*itTemp) —>1dNum;
}

cout << endl;

for (it6 = myNet->edges.begin(); it6 != myNet->edges.end(); ++it6)
//Write edges to file
fileHandle << " " << (xit6) —>idNum;

{
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fileHandle << endl;

for (it4 = myNet->nodes.begin(); it4 != myNet->nodes.end(); ++it4d) {
vector<connection*>::iterator 1it5;
fileHandle << (*it4)->idNum

<< AL "

<< (xit4d)->treelD

<< A\ "

<< (xit4d)->levellD

<< AL "

<< (xitd)->routes.size()

<< AL " ;

for (it5 = (xit4)->routes.begin();

(it5 !'= (xit4d)->routes.end());
++it5) |

fileHandle << ((xit5)->toNode)->idNum
<< n . n
<< (%x1it5) ->speed
<< n ".

4

}

fileHandle << endl;
}
cout << "Network Created\n";
exit (0);

void makeConnection (router+ routerl, router* router2, int probSpeed) {
if (routerl->idNum == router2->idNum) {
return;

}
double probabil = Equilikely(0,10)/10.0;

connectionx myConnection = new connection;
myConnection->toNode = routerl;
connection* myConnection2 = new connection;
myConnection2->toNode = router2;
if (probabil >= (probSpeed/100.0)) {
//100
myConnection->speed = 100;
myConnection2->speed = 100;
} else {
//10

myConnection->speed = 10;
myConnection2->speed = 10;
}
//push connections to oppostire routers
routerl->routes.push_back (myConnection2);
router2->routes.push_back (myConnection) ;
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void createNode (int treelID, int level, int depth, routerx parent,
networkx myNet, int widthLow,
int widthHigh, int probSpeed) {

int tempwidth = Equilikely(widthLow, widthHigh);

//depth
for (int 1 = 0; i < tempwidth; i++) {
router x*newChild = new router();

newChild->treelID = treelD;
newChild->idNum = nodeCounter;
nodeCounter++;
newChild->levelID = depth;
//create parent to child connection
makeConnection (parent, newChild, probSpeed);
myNet—->nodes.push_back (newChild) ;
if (depth > 1) {

createNode (treelID, level+l, depth -1, newChild, myNet,

widthLow, widthHigh, probSpeed);

} else {

myNet—->edges.push_back (newChild) ;

5.2 Network Data Type Source

[ **
* Network Simulation Data types and assistant classes
* By: Tyler Worman
x Email: worman€@cs.moravian.edu

*/

#include <vector>
#include <queue>
#include <limits.h>
#include <iostream>
using namespace std;

//Section for Creation of network.
class router;

class connection {
public:
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routerx toNode;
int speed;

}i

class router {
public:
vector<connection*> routes;
int idNum;
int treelD;
int levellID;
}i

class network {

public:
vector<routerx> circle;
vector<routerx> nodes;
vector<routerx> edges;

}i

//This is for sim.
class packet {
public:
int startNode;
int endNode;
deque<int> routelist;
int currentNode;
int hops;
int idNum;
double timeSoFar; //this stores time the packet was created
double nodeArrivalTime; //this stores the time that the
//packet arrived at current node..
int packetSize; //in bytes
}i

class nextNode {
public:
double queuedAt;
double serviceTime;
packetx eventPacket;
}i

class serverNode {

public:
deque<packet *> waitList;
float waitTime;
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int numProcessed;

}i

class routeFinder {
public:
//set the local graph so paths can be found on it..
void init (vector<routerx> thegraph) {
graph = thegraph;

deque<int> GetRoutelist (int start, int end, int alg,
deque<serverNodex>x routerList) {

deque<int> tempRoute;

float dist[graph.size()]1;

int prev[graph.size()];

int 1i;

deque< int > graphUnfinished;

deque< int > graphFinished;

/+*Init both arrays=/

for (i = 0; 1 < graph.size(); i++) {
dist[i] = INT_MAX;
prev[i] = -1;

graphUnfinished.push_back (i) ;
}
//This sets the starting node’s idNum to 0
dist[start] = 0;
int v = start; //current vertex
deque< int >::iterator it2;
while (graphUnfinished.size () != 0) {
deque< int >::iterator itTemp; //tempt it;
for (it2 = graphUnfinished.begin();
it2 != graphUnfinished.end();
it2+4+) {
//on first time through make v the first
//then loop to find the shortest.
if ((dist[ (graph[ (*¥1it2)])->idNum] < dist([v]) ||
it2 == graphUnfinished.begin()) {
v = graphl[ (xit2) ]->1dNum;
itTemp = it2;

}
//Add V to processed list.
graphFinished.push_back (v);
//For each edge in v, relax them...
vector< connectionx >::iterator 1it3;
for (it3 = graph[v]->routes.begin();
it3 != graph[v]->routes.end();
1t3++) |
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//this if determins the weights... for each alg
int v2 = ((*xit3)->toNode)—->idNum;
if(alg == 2) {

//If statement for speed sensative alg
vector<connectionx>::iterator connlt;
int speed = 0;

for (connlIt = graph[ (xitTemp)]->routes.begin();
connlIt != graph[ (xitTemp) ]->routes.end();
connlIt++) {
if ((xconnIt)->toNode—>idNum == v2) {
speed = (xconnlt)->speed;
}
}
if (speed == 0) {

cout << "UHOH!" << endl;

}
if ((dist[v] + (1/speed)) < dist[v2]) {

dist[v2] = dist[v] + (1/speed);
prev[v2] = v;
}
} else if(alg == 3) {

//If statement for congestion optimization alg
vector<connection*>::iterator connlt;
deque<packet x>::iterator sizelt;
vector<connectionx>::iterator speedIt;

int sizePackets =0;

int avgLineSpeed =0;

int speed =0;
for (sizelt

= (xrouterList) [v2]->waitList.begin();
sizeIt !

= (xrouterList) [v2]->wailtList.end();
sizeIt++) {
sizePackets += (xsizelt)->packetSize;

for (connIt = graphl[ (xitTemp)]->routes.begin();
connlt != graph[ (xitTemp) ]->routes.end();
connlIt++) {
if ((#connlIt)->toNode->idNum == v2) {
for (speedIt = (xconnlIt)->toNode->routes.begin();
speedIt != (xconnlIt)->toNode->routes.end();

speedIt++) {
avgLineSpeed += (xspeedIt)->speed;
}
//assumes every node has 1 route..
avgLineSpeed /= (xconnlIt)->toNode->routes.size();
speed = (xconnlt)->speed;
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if (speed == 0) {
cout << "UHOH!" << endl;

}
if ((dist[v] + (1/speed) + (sizePackets/avgLineSpeed)) < dist[v2]) {

dist[v2] = dist[v] + ( 1/speed )+ (sizePackets/avgLineSpeed);
previ[v2] = v;
}
} else if(alg == 1) {

//1f statement for shortest path algorithm
if(dist[v] + 1 < dist[v2]) {

dist([v2] = dist[v] + 1;
previ[v2] = v;
}
} else {

cout << "something didn’t go right" << endl;

}
it2 = graphUnfinished.erase (itTemp) ;
}
//shortest path in table. Load it to a route list
tempRoute.push_front (end) ;
int myVal = end;
while (myVal != start) ({
tempRoute.push_front (prev[myVall);
myVal = prev[myVall];
}
tempRoute.pop_~front ();
return tempRoute;

private:
deque< deque<int> > cachedRoutes;
vector<router*> graph;

i

5.3 Network Simulation Software Source

/ x %
* Network Packet Simulation
* By: Tyler Worman
* Email: worman@cs.moravian.edu

*/
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#include <stdio.h>
#include <math.h>
#include "rngs.h" /* the multi-stream generator =/
#include "rvgs.h"
#include <queue>
#include <vector>
#include <iostream>
#include <fstream>
#include <string>
#include <iomanip>
#include "fileClass.cc"

#define START 0.0 /* 1initial time */
#define STOP 30.0 /* terminal (close the door) time =/
#define INFIN (100.0 * STOP) /x must be much larger than STOP x/

using namespace std;

//Globals

vector<routerx> pathGraph;
deque<serverNodex*> routerList;
vector<int> edgelist;

// End Globals

/ x %
* This function is used to compare nodes for stl sort
*/

bool cmpNodes (const nextNode =xa, const nextNode x*b) {
return a->queuedAt < b->queuedAt;

[x e

*/

double Min (double a, double c) {
if (a < c¢) return (a);
else return (c);

[k mm
* generate the next arrival time, with rate 1/2

*/
double GetArrival() {
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static double arrival = START;
SelectStream(0);
arrival += Exponential (.00035);
return (arrival);

Jx e
* Gets packet size in bytes
*/

int GetPacketSize (int mode) {

if (mode == 2) {

//This is for constant size discussed in paper

return 583;
} else {
//This is for distributed size.
double chance = Equilikely (0, 100);
if (chance < 51.3) {
return 50;
} else if (chance < 82.6) {
return 1500;
} else {
return (int)Equilikely (50,1500);

Kk e
* Get’s an edge from the list

e
*/

int GetEdge (int edges) {
if (edges == 0) {

cout << "NO EDGES!"™ << endl;
}
return (int) (Equilikely (0, edges -1));

K e

* generate the next service time with rate 2/3

*/

double GetService (int routerl, int nextNodeNum, int packetSize)

// routerList[routerl].waitTime
// pathGraph[routerl]

//return (double) ((packetSize) / (10 %x1048576 ));

{

53
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vector<connection*>::iterator it;
for (it = pathGraph[routerl]->routes.begin();

it != pathGraph[routerl]->routes.end();
++it) {
if ((*xit) ->toNode—>idNum == nextNodeNum) {
return ((double) (packetSize) / (((*it)->speed) * 1048576));
break;
}
}
cout << "ERROR" << routerl << " " << nextNodeNum << endl;

return 1.0;

int main(int argc, char =x+*argv) {
/ /ARGS
//ARGV1 = Filename
//ARGV2 Packet Output Filename
//ARGV3 Which alg 1,2,3
//ARGV4 = Locked, Distributed packets
//Load file into my list of nodes...
ofstream fileHandle (argv[2], std::ios::out); //open the output file.
ifstream myfile (argv([1l]);
if (myfile.is_open()) {
int edges = 0;
int nodeNum = 0;
myfile >> nodeNum;
myfile >> edges;
for (int i = 0; 1 < edges; i++) {
int temp;
myfile >> temp;
edgelist.push_back (temp) ;

}
//create a bunch of empty nodes...
for (int 1 = 0; i1 < nodeNum; i++) {
router* myNode = new router();
myNode—->idNum = i;
pathGraph.push_back (myNode) ;
}
for (int i = 0; i < nodeNum; i++) {
serverNode* myNode = new serverNode () ;
routerList.push_back (myNode) ;
}
//read in nodes and their connections then link them up....
for (int i = 0; i < nodeNum; i++ ) {
int connNums = 0;
int tempNum = O;
myfile >> tempNum;
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if (pathGraph[i]->1dNum == tempNum) {

myfile >> pathGraph[i]->treelD;

nmyfile >> pathGraph[i]->levellD;

myfile >> connNums;

for (int j =0; j < connNums; Jj++) {
char temp;
connection* newConn = new connection();
int tempConnNode;
myfile >> tempConnNode;
newConn->toNode = pathGraph[tempConnNode];
myfile >> temp;
myfile >> newConn->speed;
pathGraph[i]->routes.push_lback (newConn) ;

} else {
cout << "HORRIBLE DATA ERROR!";

}

nmyfile.close();

}
//done reading data

//Setup The Data Statistics Parts

struct {
double arrival; /* next arrival time =*/
double current; /% current time */
double next; /* next event time */

double completion;
double last;

bt
struct {
double node; /* time integrated number in the node «/
double queue; /* time integrated number in the queue x/
double service; /* time integrated number in service */
} area = {0.0, 0.0, 0.0};
long index = 0; /+ used to count departed Jjobs */
long number = 0; /+* number in the node x/
long iterations = 0;

//Setup queue
deque<nextNodex> myQueue;
nextNodex node = new nextNode;
PlantSeeds (123456789) ;
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//Setup Router Network
routeFinder getRoutes;
getRoutes.init (pathGraph) ;
//Setup Timer

t.current = START; /* set the clock *x/
t.arrival = GetArrival(); /* schedule the first arrival */
t.completion = INFIN; /+ the first event can’t be a completion x/
while ((t.arrival < STOP) || (number > 0)) {

t.next = Min(t.arrival, t.completion);

//find ammount in each node...

int numNodes =0;

int nodesInUse = 0;

for (int 1i; i1 < routerList.size(); i++) {
numNodes += routerList[i]->waitList.size();

if (routerList[i]->waitlList.size() > 0) {
nodesInUse++;
}
}
area.node += (numNodes / routerList.size());
area.queue += myQueue.size();
area.service += (nodesInUse); // routerList.size());
t.current = t.next; /* advance the clock =*/
iterations++;

// ARRRIVALS!

if (t.current == t.arrival) {
index++;
t.arrival = GetArrival () ;

//This is the arrival of the next event...
//Create a packet

packetx arrPacket = new packet();

arrPacket->startNode = edgelist [GetEdge (edgelist.size())];
arrPacket->endNode = edgelist [GetEdge (edgelist.size())];
//incase they are somehow duplicates...

while (arrPacket->endNode == arrPacket->startNode) {
arrPacket->startNode = edgelist [GetEdge (edgelist.size())1;
arrPacket->endNode = edgelist [GetEdge (edgelList.size())]1;

}

arrPacket->routelList = getRoutes.GetRoutelist (arrPacket->startNode,

arrPacket->endNode,
atoi (argv[31]),
&routerList);
SelectStream(l);
arrPacket->packetSize = (int)GetPacketSize (atoi(argv([4]));
//Note packet size in bytes
arrPacket->hops = 0;
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arrPacket->idNum = index;
arrPacket->timeSoFar = t.current;
arrPacket->currentNode = arrPacket->startNode;
arrPacket->nodeArrivalTime = t.current; //store this for the 3rd alg
//Place it on the Router Lists...
routerlList [arrPacket->currentNode]->waitList.push_back (arrPacket);
if (routerlist [arrPacket—>currentNode]->waitList.size () == 1) {
//If size is = to 1 then we should go and schedule this
node = new nextNode () ;
node—>eventPacket = arrPacket;
node->serviceTime = GetService (arrPacket->currentNode,
arrPacket->routelList.front (),
arrPacket->packetSize);
//cout << node->serviceTime << endl;

node—>queuedAt = t.current;
myQueue.push_back (node) ;
number++;

} else {

//Queue was larger then 1

//so it will be scheduled later for now it Jjust sits.
}
//Sort by times.
sort (myQueue.begin (), myQueue.end(), cmpNodes);

t.completion = t.current + myQueue.front ()->serviceTime;
if (t.arrival > STOP) {
t.last = t.current;
t.arrival = INFIN;
}
} else { /* process a completion =/
if (number > 0) {
int tempPacketLoc = myQueue.front () —>eventPacket->currentNode;
if (myQueue.front () —>eventPacket->routelist.front () ==
myQueue. front () —>eventPacket->endNode) {
//Update data from the ending jump
myQueue. front () —>eventPacket->hops++;

//Packet is done and just needs to vanish and load up the next..
//outputdata
fileHandle << myQueue.front () ->eventPacket->hops
< < " "
<< setw(20)
<< fixed
<< (t.current - myQueue.front ()->
eventPacket->timeSoFar)
<< " "
<< myQueue.front () —>eventPacket->startNode
<< n n
<< myQueue.front () —>eventPacket->endNode
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<< mom
<< myQueue. front () —>eventPacket->packetSize
<< endl;
//Increase the ammount of packets this node has processed
routerList [tempPacketLoc]->numProcessed++;
routerList [tempPacketLoc]->waitTime += t.current -
myQueue. front () —>eventPacket->nodeArrivalTime;

//Remove packet and update stats.

routerList [tempPacketLoc]->waitList.pop_front();
myQueue.pop_~front () ;

number—-—;

if ((routerList [tempPacketLoc]->waitList.size()) >= 1) {

//Still events left in router

//Figure out the service Time

node = new nextNode () ;

node->eventPacket = routerList[tempPacketLoc]->waitList[0];

node->serviceTime =

GetService (node—->eventPacket—->currentNode,

node->eventPacket->routeList.front (),
node->eventPacket->packetSize);

node—->queuedAt = t.current;

myQueue .push_back (node) ;

std::sort (myQueue.begin (), myQueue.end (), cmpNodes) ;

number++;
}
} else {

//Packet Isn’t done it must be moved and rescheduled.
int goingTo = myQueue.front () —>eventPacket->routelList.front ();
int currAt = myQueue.front () ->eventPacket->currentNode;
routerList [goingTo]->waitList.push_back (myQueue. front ()—->
eventPacket) ;
myQueue. front () —>eventPacket->currentNode = goingTo;
//Update routes to go left in list
myQueue. front () ->eventPacket->routelList.pop_front ();
myQueue. front () —>eventPacket->hops++;

//Increase the ammount of packets the current node has processed
routerList [currAt]->numProcessed++;
routerList [currAt]->waitTime += t.current -
myQueue. front () —>eventPacket->nodeArrivalTime;
//this takes care of setting the packet arrival
//time when it’s queued on the new node.
myQueue. front () —>eventPacket->nodeArrivalTime = t.current;
//Pop off old one...
myQueue.pop_~front () ;
number—-—;
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routerList [currAt]->waitList.pop_front();

//Reschedule event at old router if any exist.
if (routerList [currAt]->waitList.size() >= 1) {

//Still events left in router

//Figure out the service Time

node = new nextNode () ;

node->eventPacket = routerList[currAt]->waitList[O0];

node->serviceTime =

GetService (node->eventPacket->currentNode,

node->eventPacket->routelList.front (),
node->eventPacket->packetSize);

node->queuedAt = t.current;

myQueue.push_back (node) ;

number++;

//Reschedule event at new router if it’s first
if (routerList [goingTo]->waitList.size() == 1) {
//Still events left in router
//Figure out the service Time
node = new nextNode () ;
node->eventPacket = routerList[goingTo]l->waitList[0];
node->serviceTime =
GetService (node—->eventPacket—->currentNode,
node->eventPacket->routelList.front (),
node->eventPacket->packetSize);
node—>gqueuedAt = t.current;
myQueue .push_back (node) ;
number++; //Queue size 1is added one..
}
//Resort the Queue
sort (myQueue.begin (), myQueue.end(), cmpNodes);
}
if (number >0)
t.completion = t.current + myQueue.front ()->serviceTime;
} else {
t.completion = INFIN;
}
//cout << myQueue.size () << endl;
} else {
t.completion = INFIN;

-~

}
printf ("for %1d jobs\n", index);
printf ("Iteratiorns: %d", iterations);

printf (" average interarrival time $6.2f\n", t.last / iterations);
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printf (" average # in the nodes = %6.2f\n", area.node / iterations);
printf (" average # in the queue .. = %6.2f\n", area.queue / iterations);
printf (" utilization ............. = %6.8f\n", area.service);

return (0);
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